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We present an extensive study of a new Monte Carlo acceleration algorithm 
introduced by Wolff for the Ising model. It differs from the Swendsen-Wang 
algorithm by growing and flipping single clusters at a random seed. In general, 
it is more efficient than Swendsen-Wang dynamics for d >  2, giving zero critical 
slowing down in the upper critical dimension. Monte Carlo simulations give 
dynamical critical exponents zw=0.33+0.05 and 0.44_+0.10 in d = 2  and 3, 
respectively, and numbers consistent with z w = 0 in d =  4 and mean-field theory. 
We present scaling arguments which indicate that the Wolff mechanism for 
decorrelation differs substantially from Swendsen Wang despite the apparent 
similarities of the two methods. 
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1. I N T R O D U C T I O N  

Considerable attention has been given in recent years to efficient Monte 
Carlo methods in statistical physics. Recently, Swendsen and Wang (l~ (SW) 
introduced a new dynamics which effectively reduces the dynamical expo- 
nent z and the effects of critical slowing down. This dynamics, based on the 
Fortuin-Kasteleyn map for site-bond percolation and the Potts model,/2'3) 
flips whole clusters. This increases the relaxation rate while preserving 
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detailed balance and ergodicity. Although this dynamics is useful and 
generalizations already exist, (4 7) there are still open questions about the 
dynamic universality classes (8) it introduces. ~ 

Here we study a single-cluster Monte Carlo algorithm introduced by 
Wolff (~~ for the O(N) spin models as a variation on the SW scheme for the 
Ising model. The main difference for the Ising case is that in each Monte 
Carlo step only one cluster is formed and flipped with probability 1. In 
the original SW algorithm all percolation clusters are formed and flipped 
with probability 1/2. This algorithm is an application to dynamics of the 
Leath cluster growth method. (1~) The single percolation cluster is grown 
starting from a site selected at random. The clusters formed are the same 
Coniglio-Klein droplets (3) used by SW dynamics, but they are sampled 
with an additional weight factor equal to the cluster volume. The effect of 
this procedure is to choose bigger clusters, which generally reduce auto- 
correlation times and increase the efficiency. 

In this paper, we present numerical results for d =  2, 3, 4 and mean- 
field simulations and scaling arguments that give insight into the decorrela- 
tion mechanisms involved. Our main results are summarized in Table I. 

2. S INGLE-CLUSTER M O N T E  CARLO D Y N A M I C S  

In a recent paper, Wolff considered two distinct ideas for generalizing 
Swendsen Wang cluster dynamics. One idea involved a new embedding 
scheme for the continuous spin O(N) models similar to one introduced for 
the ql 4 theory (6) and the other idea modified the method of updating the 
percolation clusters. It is this modified update procedure which we wish to 
study in the simplest case of the Ising model. We begin with a brief review 
of the basic formalism for cluster dynamics of the Ising model. 

We will study relaxation rates by finite-size effects on hypercubic 
lattices of linear size L and volume L d in dimensions d = 2, 3, and 4. The 
standard Ising probability distribution is 

1 I ] PI(Cri)=Zii exp K ~ ( a i ~ j -  1) (1) 
<i,j) 

where K=J/kBT and J is the coupling constant. P~(~s) can also be 
expressed as a product over bonds, 

1 
PI(ai)= Z 1-[ [p6~,~j.~+(1--p)] (2) 

( i , j )  

where p = 1 - e 2K. The key step to constructing the cluster dynamics is to 
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consider a joint probability distribution for the Ising spins ai and site bond 
percolation variables nr 

1 
PJoint(Gi'Flij)--ZJoint 1-I [P(~ricrj, l~nij, l+(1--P)(~mj, O] (3) (i,j) 

which has the property that summing over the percolation variables (n,j) 
gives the Ising model and summing over the Ising variables (ai) gives the 
so-called random percolation model, 

1 
PRC(nU)=~----qNc~~ [ I  P [ I  ( l - p )  (4) 

Z - R C  n 0 = I n 0 = 0 

The factor qNclu~t is written correctly for a q-state Potts model, where Nclus  t 

is the number of clusters, although in the Ising model q-- 2. 
The Swendsen-Wang cluster dynamics operates on the joint model to 

update the cluster distribution (or percolation variables) for fixed spins 
followed by an update of the spins for fixed bonds. In each percolation step 
the bonds are set (n o. = 1) with probability 

Po = 1 - e -x(1 + ~J~ (5) 

which results in the correct distribution of clusters. We define nc, the 
average number of clusters containing c up (or c down) spins on a lattice 
of size N. These distributions are analogous to the standard n~ distribution 
of pure q = 1 percolation, except that we do not drop the incipient infinite 
cluster. Hence the normalized cluster probability distribution is 

P(c )=  nC (6) 
N c l u s t  

since Zc nc = Nc lus t .  The SW dynamics updates all clusters drawn from this 
distribution, whereas WollTs dynamics consists of updating a single cluster 
drawn from the distribution 

Iclnc 
P w o l f f  ( c )  = ( 7 )  

N 

weighted by the volume of the cluster relative to the SW algorithm. 
In detail, the Wolff algorithm consists of the following steps: 

1. Pick a site i o at random. 

2. Grow a percolation cluster from i o by throwing bonds to nearest 
neighbors with probability Pio, j = 1 - exp[ - f l J (1  + O'i00"j)] ,  and continue 
iteratively until no new peripheral sites are generated. 
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3. Flip with probability one the spins in the cluster just formed, take 
measurements, and repeat the cycle. 

The resulting dynamics is ergodic and obeys detailed balance. (1~ It 
differs in two respects from SW dynamics: (1) It flips a single a cluster 
at a time before repercolating the lattice and (2) it draws this cluster from 
the probability distribution Pwolff(c). 

In order to compare Wolff's results with other, more conventional 
dynamics (Glauber, heat bath) or with SW, Wolff's Monte Carlo iteration 
time must be rescaled. One Wolff time step has a computational cost of the 
cluster size Icl, while the conventional update is proportional to the volume 
of the entire lattice N. Therefore, Wolff's autocorrelation time must be mul- 
tiplied by a factor ( [c [ ) /N,  where 

C2FI c 
(Icl)=Y~ Icl Pwol~(c)=Y N (8) 

c c 

By the Fortuin Kasteleyn mapping this quantity (Icl) for the random 
cluster model is proportional to the Ising susceptibility. 

Thus, the relaxation times r~v measured in a Wolff dynamics simula- 
tion are rescaled according to 

(Icl)  , 
- -  ~ w  ( 9 )  r w -  N 

which with the finite-size scaling relations ( I c l )  ~ L `//v, N =  L d, and r ~ L zw 
gives 

Z w  = Z'w - ( d -  ~,/v) (10) 

This Zw is the correct parameter to compare with the dynamical exponents 
of Swendsen-Wang, Zsw. 

3. A N A L Y S I S  A N D  N U M E R I C A L  RESULTS 

In our computer simulations, we accumulate measurements of the 
internal energy, magnetization, and susceptibility at every time step. To 
estimate r~v, we compute the time autocorrelation function over samples of 
at least 3 x 10 5 steps. The autocorrelation function being considered 

(A(O) A ( t ) )  - ( A ) 2  
C( t )=  ( A ) 2  - ( A ) 2  (11) 

where the average is over the sampling time and A is the energy or suscep- 
tibility. T~v is determined from a linear fit of log C(t) to t in the region in 
which the long-time single exponential decay is seen. 
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d = 2 d = 3 d = 4 Mean-field 

7 1.75 1.25 1 1 

v 1 0.629 �89 �89 
d -  y/v 0.25 1.01 2 2 

Z~v 0.58 _+ 0.05 1.45 _+ 0.10 1.95 4- 0.15 1.90 _+ 0.15 

z w 0.33 + 0.05 0.44 + 0.10 - 0 . 0 5  + 0.15 - 0 . 1 0  _+ 0.15 

Zsw 0.35 0.75 - -  1 

a The first three rows give the static exponents  7, v, and the rescaling shift. The next two rows 

give our measured Wolf f  exponents  and its shifted values: z w = Z'w - ( d - 7 / v ) .  The last row 

gives the S w e n d s e n - W a n g  exponents.  {n 

Statistical fluctuations in C(t) lead to errors in the calculation of 
r~v.(n 15) To estimate those errors, we split the data sample into several 
groups and recomputed r;v for each group. Each group is much longer 
than r~v. The error is computed using standard error analysis techniques. 
Values of r;v are computed for different lattice sizes at the critical point for 
the infinite lattice and an estimate for Z~v is obtained by finite-size scaling, 

-c~ ~ ~v ~ L~v (12) 

Fig. 1. 
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and Z~v is computed from a linear fit of log rw to log L. Finally, the 
effective Zw is calculated using Eq. (10). 

Other methods to estimate Zw were also used. Relaxation times com- 
puted from the area under the autocorrelation function give values of Zw 
which seem to agree well with our previous results. Double exponential 
fits (15) also give similar results. Our results are summarized in Table I and 
Figs. 1 and 2. 

In Fig. 3 we plot cluster distributions for Wolff and SW. As expected, 
the cluster distribution for Wolff is equal to the one for SW weighted by 
the size of the cluster: 

Icl Pwo]ff(c) - -  P(c) (13) 
<lcl>sw 

and the two distributions must cross each other at tc[ = (Icb)sw. 
The distributions follow the finite cluster form P ( c ) ~ l c l  ~ for 

the random cluster model except at large values for Ic[ when infinite 
(spanning) clusters contribute, producing a "bump" in the tail of the 
distribution. 

Finally, we wish to remark on some numerical simulations designed to 
distinguish between the two novel aspects of Wolff's update scheme: (1) 
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Fig. 2. Energy autocorrelation relaxation time (tEE) for the Ising Wolff dynamics in 
d=2,  3, 4. 
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Fig. 3. Cluster probability distribution for Swendsen Wang and Wolff dynamics for different 
dimensions. The cluster size is denoted by c. The system sizes are 16 x 16, 10 3, and 6 4. Each 
P(c) was computed with at least 10 s clusters. The dotted line indicates the average cluster size 
for SW and the dashed line the average cluster size for Wolff. 

flipping single clusters and (2) using a probability function Pwom-(c) 
weighted by the cluster mass. We can try update schemes with different 
cluster probability weights. For  example, we can percolate the entire lattice, 
pick a single cluster at random with the probability P(c) appropriate for 
Swendsen-Wang dynamics, and flip it with 100% probability, before 
repercolating the lattice. Such a scheme we refer to as a single-cluster 
Swendsen-Wang (scSW) algorithm. Again the rescaled autocorrelation is 
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defined by rescaling the measured r'scsw "~L z;~ by a factor <]c] >sw/N, 
where 

<lcl>sw : ~  Icl n~ N (14) 
Nclust Nclust 

Here <lcl>sw scales as L ~ so that the rescaled rscsw gives Zsosw = 
z'scsw - d. 

It should be emphasized that, unlike Wolff's algorithm, there may be 
no way of actually finding these single clusters in O(Nclust) operations. 
Nonetheless, choosing single clusters from various probability distributions 
can help in analyzing the role of cluster sizes. Our present simulations give 
A~sw -- 0.17 _+ 0.10 and 0.45 _+0.15 for d =  2 and 3, respectively. Since the 
intervening percolation steps should act to further decorrelate clusters, the 
fact that our results are consistent with A~sw ~<Zsw might have been 
anticipated. Further interpretations should await more accurate data across 
a broader range of lattices sizes and probability distributions. 

4. CONCLUSIONS 

The data presented in the previous section demonstrate clearly that 
the Wolff algorithm has smaller decorrelation times in three and four 
dimensions than SW, and correspondingly smaller exponents (i.e., 
Z w < ZSW ). 

In two dimensions, the exponents are equal (Zw -Zsw)  within error 
bars. Morever, there may be finite-size effects visible in the curvature of the 
d-- 2 data of Fig. 2, which would imply a smaller Zw asymptotically. 

To understand why Wolff dynamics can be faster than SW, we have 
measured the cluster size distribution for the SW and Wolff algorithms. It 
is obvious from Fig. 3 that one reason that the Wolff algorithm is more 
efficient than SW is that the mean size of the clusters flipped is significantly 
larger. Specifically, the method of choosing the Wolff clusters, i.e., choosing 
a cluster with a probability proportional to the number of spins in the 
cluster, is equivalent to multiplying the SW cluster distribution by the 
mean cluster size. For large clusters the size of the correlation length ~ thus 
results in a maximum of ~/v incipient infinite clusters per Monte Carlo 
time step rather than the one incipient infinite cluster per time step in SW. 
This restriction to one incipient infinite cluster per time step in SW is a 
consequence of the percolation definition of the flipped clusters.(16'1'3) 

To understand the Wolff algorithm and how it differs from SW, we 
must consider the dynamics of the incipient infinite clusters and how the 
Wolff algorithm employs them to eliminate the correlations. In the SW 
algorithm we have argued (9) that the mechanism of domain wall diffusion, 
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which dominates the decorrelation mechanism in the Glauber algorithm, is 
retained. If the Wolff algorithm is using the incipient infinite cluster of size 

to elimiate correlated domains, then it cannot eliminate them by domain 
wall diffusion. An alternate mechanism is the uniform thinning of large 
correlated domains in a (roughly) uniform manner. 

If the incipient infinite clusters are independent, or correlated over a 
finite time, then one could describe the "thinning" decorrelation process in 
the Wolff algorithm as a directed walk in magnetization space with a step 
size equal to the mass of the incipient infinite cluster ~a-~.  Here ~ is the 
correlation length,/~ is the order parameter exponent, (~6,3) v is the correla- 
tion length exponent, {16'3) and d is the dimension of space. To eliminate a 
domain of mass ~d requires ~d/~d-~/v = ~/v steps and hence a time which 
scales as ~2B/v. 

For  d~>4 the incipient infinite clusters are independent. This can be 
seen from the following argument. In infinite dimensions incipient infinite 
clusters with fractal dimension 4 will not interfere with each other. There- 
fore, one expects no correlation between large clusters, since they do not 
"see each other." This leads to a z~  ~ ~2B/~ and a renormalized Zw =0.  
Since Zw for d~> 4 should be the same as the infinite-dimension value, we 
expect Zw = 0 in d =  4. This is consistent with the data (see Table I). 

To support this argument, we have measured the time-dependent 
susceptibility-susceptibility correlation function (ZX) (Fig. 5). Since the 
mean cluster size is equivalent to the susceptibility, (m3) (XZ) will be 
proportional to the cluster-cluster correlations for clusters the size of 4. In 
d = 4 ,  <ZZ) decays exponentially, leading to the conclusion that there 
are only finite time correlations and that the clusters can be treated as 
independent. 

In addition, we have plotted in Fig. 4 the size of the "flipped cluster" 
for each unrenormalized time step. The y axis is the size of the cluster, with 
the sign denoting the direction of the flip, and the x axis is the time where 
one time unit corresponds to one cluster flip. The brackets about some of 
the points in the figure represent the number of spins that a particular 
cluster had in common with the previous cluster flipped in the opposite 
direction. This plot, consistent with Fig. 5, shows almost no correlation 
between large clusters in d =  4. 

We have made the same cluster size-time plots for d =  2 and 3. The 
difference is striking. Clearly there is considerably more correlation 
between large clusters in 2 and 3 dimensions than there is in 4. This is 
supported by the measurement of (TJ~) in d = 2 and 3. As can be seen from 
Fig. 5, the relaxation time scales with the system size. Fitting the data to 
exponential decay, we extract a relaxation time that diverges as ~z~, where 
zzz = Zw within the accuracy of the data. 
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Fig. 4. Size of the flipped cluster versus time step, for Wolff dynamics in d= 2, 3, 4. The 
brackets indicate the number of spins that the flipped cluster had in common with the 
previous cluster flipped. 

This leads us to pos tu la te  the fol lowing mechan i sm to explain  the 
acce le ra t ion  of  decor re la t ion  in the Wolff  a lgor i thm.  The  d o m i n a n t  
mechan i sm for decor re la t ion  is in the clusters the size of the cor re la t ion  
length th inning  the corre la t ing  domains  in a spat ia l ly  uniform manner .  This 
is in con t ras t  to the SW algor i thm,  which appears  to ma in ta in  the d o m a i n  
wall diffusion mechanism.  We can then th ink of the deeor re la t ion  as a 
d i rec ted  walk in magne t i za t ion  space where each step requires a t ime ~z~. 
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Fig. 5. Susceptibility autocorrelation relaxation time (zxz) for the Ising Wolff dynamics in 
d= 2, 3, 4. The z exponents computed from these data agree well with the ones computed 
from Fig. 2. 

With the proper renormalization of the time by the factor d -  7/v this leads 
to the following simple formula for the Wolff exponent: 

Zw = - - +  zx• - d +  Z (15) 
V V 

or with hyperscaling Zw = zx~, consistent with the measurements. 
The above considerations support the conclusion that the Wolff algo- 

rithm is more efficient than the SW algorithm for obtaining static critical 
exponents in dimensions greater than or equal to three. Within �9 the 
accuracy of our data, Wolff and SW are equivalent in d =  2 and Zw -- Zsw 
trivially in d = 1. 

Finally in this section we note that the Wolff algorithm appears to 
have changed a basic ingredient in the way decorrelation takes place 
in Glauber. Specifically, rather than domain wall diffusion, which is 
maintained as the dominant mechanism in SW, Wolff appears to use a 
"thinning" process as discussed above. In this regard SW appears to be 
more faithful to the original local Glauber model dynamics and may be 
more useful in obtaining information about dynamical evolution in pro- 
cesses far from equilibrium such as nucleation and domain growth. 
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